首页 >> 收录期刊 >> 软件学报 >> 正文
杂志中文名:软件学报
杂志英文名:Journal of Software
主管单位:中国科学院
主办单位:中国科学院软件研究所、中国计算机学会
地址:北京海淀区中关村南4街4号中科院软件所(8718信箱)
邮编:100080
电话:010-62562563 ;
Email:jos@iscas.ac.cn
ISSN:1000-9825
主编:李明树












构造型神经网络双交叉覆盖增量学习算法
引用本文:陶品,张钹,叶榛.构造型神经网络双交叉覆盖增量学习算法[J].软件学报,2003,14(2):194-201.
作者姓名:陶品  张钹  叶榛
作者单位:清华大学,智能技术与系统国家重点实验室,北京,100084;清华大学,计算机科学与技术系,北京,100084
基金项目:Supported by the National Natural Science Foundation of China under Grant No.60135010 (国家自然科学基金); the National Grand Fundamental Research 973 Program of China under Grant No.G1998030509 (国家重点基础研究发展规划(973))
摘    要:研究了基于覆盖的构造型神经网络(cover based constructive neural networks,简称CBCNN)中的双交叉覆盖增量学习算法(BiCovering algorithm,简称BiCA).根据CBCNN的基本思想,该算法进一步通过构造多个正反覆盖簇,使得网络在首次构造完成后还可以不断地修改与优化神经网络的参数与结构,增加或删除网络中的节点,进行增量学习.通过分析认为,BiCA学习算法不但保留了CBCNN网络的优点与特点,而且实现了增量学习并提高了CBCNN网络的泛化能力.仿真实验结果显示,该增量学习算法在神经网络初始分类能力较差的情况下具有快速学习能力,并且对样本的学习顺序不敏感.

关 键 词:模式识别  神经网络  机器学习  覆盖  增量学习
文章编号:1000-9825/2003/14(02)0194
修稿时间:2002年3月28日
作者简介:陶品(1974-),男,安徽芜湖人,博士生,主要研究领域为人工神经网络,机器学习.Corresponding author: Phn: 86-10-62775113, E-mail: taopin97@mails.tsinghua.edu.cnhttp://www.cs.tsinghua.edu.cn

An Incremental BiCovering Learning Algorithm for Constructive Neural Network
TAO Pin,ZHANG Bo and YE Zhen.An Incremental BiCovering Learning Algorithm for Constructive Neural Network[J].Journal of Software,2003,14(2):194-201.
Authors:TAO Pin  ZHANG Bo and YE Zhen
Abstract:The algorithm of incremental learning in cover based constructive neural networks (CBCNN) is investigated by using BiCovering algorithm (BiCA) in this paper. This incremental learning algorithm based on the idea of CBCNN can set up many postive-covers and negative-covers, and can modify and optimize the parameters and structure of the neural networks continuously, and can add the nodes according to the need and prune the redundant nodes. BiCA algorithm not only keep the advantages of CBCNN but also fit for incremental learning and could enhance the generalization capability of the neural networks. The simulational results show that the BiCA algorithm is not sensitive to the order of the sample and could learn quickly and steady even if the performance of initial CBCNN is not very good.
Keywords:pattern recognition  neural network  machine learning  cover  incremental learning
本文献已被 CNKI 维普 万方数据 等数据库收录!
    浏览原始摘要     下载PDF全文